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SUMMARY

We show that a non-physical velocity may appear in the numerical computation of the ¯ow of an incompressible
¯uid subjected to external forces. A distorted mesh and the use of a numerical method which does not rigorously
ensure the incompressibility condition turn out to be responsible for this phenomenon. We illustrate it with
numerical examples and we propose a projection method which improves the results. # 1997 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

We are interested here in the steady state of an incompressible homogeneous ¯uid in the presence of a

body force. This force may result from a coupling (e.g. magnetohydrodynamic equations or

Boussinesq equations) or may be a given external force. For the sake of simplicity we shall only

consider here the latter case.

When this force is the gradient of a potential, namely f�HF, and when the velocity obeys the no-

slip condition on the boundary of a ®xed domain, we expect to obtain a ¯uid everywhere at rest.

However, as will be seen, numerical simulations which do not ensure rigorously div u � 0 may lead

to a non-zero velocity.

We give a few examples of this phenomenon in Section 2 and we propose a ®rst explanation in

Section 3. The deformation of the mesh plays a role in the observed inaccuracies, but it is not their

unique cause.

With a general force (f � curl g � HF) we have noticed that the `gradient part' may also produce a

velocity ®eld which pollutes the physical ¯ow. We give an example of this in Section 2.4. For

practical applications it is worth noticing that this phenomenon may a fortiori induce important

numerical errors in coupled problems.

Section 4 is devoted to a projection method which eliminates the spurious speeds when f�HF
(this method can easily be extended to the case of a force f � HF� curl g when F is a priori

known). In Section 5 we extend this method in order to reduce the inaccuracy for any f whose

decomposition is not a priori known.
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Let us note that a method close to ours has already been suggested by Besson et al.1 for a penalty

formulation for the pressure. Nevertheless, our presentation allows us to establish a link between the

spurious speeds and the deformation of the grid (see Appendix I). More precisely, we explain why

spurious speeds do not appear on a right mesh with some particular forces and we also show that they

do appear with some forces even on a right mesh. Moreover, we give an error estimate (see Appendix

II) which proves that our method improves the results on any meshes.

The numerical simulations are performed with the FEM code FIDAP* Version 7.52 and with a

home-made code. We use the pairs Q1=P0 and Q2=P1 of ®nite element spaces to approximate the

velocity and the pressure. It is well-known that the pair Q1=P0 does not rigorously satisfy the

Ladyzenskaia±Babuska±Brezzi condition and yields a spurious pressure (see e.g. References 2 and

3). Nevertheless, the problem presented here is independent of this fact and occurs also with the

elements Q2=P1 which satisfy the LBB condition.

2. SOME NUMERICAL EXPERIMENTS

2.1. A free surface problem

Our initial motivation was to improve a 2D free surface algorithm. Two incompressible ¯uids

separated by an interface are subjected to a force f�HF0, with F0�x; y� � 5
2

y2 ÿ 10x. Their densities

are 2300 and 2150 kg mÿ3 and their viscosities 1�1 and 2�5 m2 sÿ1. We solve the Navier±Stokes

equations in a box with homogeneous Dirichlet boundary conditions on three sides and u?n � 0 on

the fourth side. The steady state interface is a curve F(x, y)�C, where C is a constant determined by

the conservation of volume. The theoretical velocity is zero. Numerically, the position of the interface

is good, but we notice the appearance of a vortex (0�2 m sÿ1) in each ¯uid (Figure 1).

Figure 1. Spurious velocity (0�2 m sÿ 1) in two immiscible ¯uids submitted to f�HF0, with F0�x; y� � 5
2

y2 ÿ 10x: left, mesh;
right, velocity ®eld. This test is performed with FIDAP V7.52 with the Q1=P0 pair of ®nite elements

* FIDAP is a trademark of Fluid Dynamics International, Inc.
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In order to understand the problem raised above, we simplify the experiment: in the following three

tests we just consider a single ¯uid in a closed box O with various given forces and we solve the

linear Stokes equations

ÿZDu� Hp � rf on O; �1�
div u � 0 on O; �2�

u � 0 on @O: �3�

We set Z� 0�01 m2 sÿ1 and r� 1 kg mÿ3 in the sequel.

2.2. A ¯uid subjected to a constant force f

We assume f is constant and equal to (100, 100) on O. In Figure 2 we use Q1=P0 elements and we

see that no velocity appears on a right grid (maximum about 0�1610ÿ11 m sÿ1), whereas the

velocity reaches 0�83 m sÿ1 on bent elements. In Figure 3 very similar results are obtained with

Q2=P1 elements.

This suggests that the deformation of the grid plays a role in the inaccuracy on the velocity and

may explain the dif®culty mentioned in Section 2.1 in the case of a free surface (where elements are

bent, since the mesh follows the interface in our computation).

2.3. A ¯uid subjected to a force f � HF

In this test we use Q1=P0 elements and the force f is equal to HF1, with

F1(x, y)� x5� x4y3� x2y� y4. The right-hand side of Figure 4 shows that spurious speeds appear

on a bent mesh (maximum 0�19610ÿ1 m sÿ1) but one may see on the left-hand side that they also

appear on a grid whose elements are squares (maximum 0�76610ÿ3 m sÿ1). Therefore the

deformation of the mesh clearly makes worse the accuracy on the velocity, but imprecise results may

also appear on rectangular elements.

Similar results were obtained with Q2=P1 elements.

Figure 2. Fluid in presence of constant force with Q1=P0 elements. The in¯uence of the shape of the mesh is striking: left,
maximum speed 0�1610ÿ 11 m sÿ 1; right, 0�83 m sÿ 1
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2.4. A ¯uid subjected to a force f � HF� curl g

The two previous tests deal with a ¯uid at rest. We now build an experiment where the force is the

sum of a gradient part and a solenoidal part, thereby creating a non-zero velocity:

f � HF� curl g: �4�
In order to enforce the incompressibility and the no-slip condition on the boundary, we set g� g0,

with g0 built as follows:

A � k�xy�H ÿ x��W ÿ y��2; �5�
u � curl A; �6�

g0 � curl u; �7�

where H and W are respectively the height and the width of the 2D box and k is a constant. For the

numerical computations, H�W� 1, k� 0�1 and F�x; y� � F0�x; y� � 5
2

y2 ÿ 10x.

Figure 3. Same test as in Figure 2 but with Q2=P1 elements: left, maximum speed 0�2610ÿ 11 m sÿ 1; right, 0�3 m sÿ 1

Figure 4. Fluid in presence of f�HF1: rectangular mesh, maximum speed 0�76610ÿ 3 m sÿ 1; bent mesh, 0�19610ÿ 1 m sÿ 1.
This case is presented with the Q1=P0 pair of ®nite elements. We obtain similar results with Q2=P1 elements
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Note that the velocity u can be analytically computed with (6) and p�F (up to an additive

constant).

Figure 5 shows the velocity ®eld on a mesh with rectangular elements (left-hand side) and a

comparison between the theoretical ®rst component of the velocity and the numerical one on the

straight line y� 0�4 of O: the result is very precise (it is dif®cult to distinguish between the two

curves). The same test computed on a distorted mesh is presented in Figure 6 with Q1=P0 elements

and in Figure 7 with Q2=P1 elements: the ¯ow is perturbed in both cases.

Remark 1

It is worth noticing that when F� 0 (i.e. the force is divergence-free), the numerical velocity is

very close to the theoretical one on both rectangular and bent elements. Thus the deformation of the

grid seems to affect the velocity essentially in the presence of a non-divergence-free force.

2.5. Other experiments

Let us brie¯y mention other experiments which lead to analogous conclusions.

Figure 5. Fluid in presence of f � HF0 � curl g0 on rectangular elements: left, velocity ®eld; right, comparison between
theoretical ®rst component of velocity and numerical one on straight line y� 0�4. Finite elements Q1=P0

Figure 6. Same situation as on Figure 5 but on a distorted mesh
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The ¯ow u de®ned by (6) is the solution of the Navier±Stokes equations for the force

f � HF0 � curl g0 � u?Hu. If we compute the numerical solution in this non-linear setting, we

observe that spurious velocities appear again on a bent mesh.

Likewise, they appear in many other experiments that we do not detail here and that involve other

boundary conditions, a three-dimensional box, a transient ¯ow, etc.

Let us also notice that the inaccuracy seems to increase with the Reynolds number and to decrease

with the typical size of the mesh.

3. AN ATTEMPT AT EXPLANATION

Let us recall ®rst of all why the ¯uid is at rest in the presence of f�HF.

For m5 0 we denote as usual by Hm(O) the Sobolev space

Hm�O� � fu 2 L2�O�; Dgu 2 L2�O�; 8g; jgj4mg;

where g� (g1, g2, g3) is a multi-index and jgj � g1� g2� g3. For m5 1, Hm
0 �O� is the subspace of

Hm(O) consisting of functions vanishing on @O. We denote by L2
0�O� the space

L2
0�O� � q 2 L2�O�;

�
O

qdx � 0

� �
:

We shall suppose in the sequel that f 2 L2(O)2. The Stokes problem (1)±(3) may be formulated in a

variational form: ®nd u 2 H1
0 �O�2 and p 2 L2

0�O� such that

Z
�
O
Hu?Hvdxÿ

�
O

p div vdx �
�
O

f?vdx;�
O

q div udx � 0

�8�

for all v 2 H1
0 �O�2 and q 2 L2

0�O�.

Figure 7. Same situation as in Figure 6 (distorted mesh) but with Q2=P1 elements. While the Q2=P1 approximation is better
than Q1=P0, signi®cant inaccuracies remain
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In particular, taking v� u, we have

Z
�
O
jHuj2dx �

�
O

f?udx �
�
O
HF?udx � ÿ

�
O
F div udx � 0; �9�

which shows that u� 0 almost everywhere in O, i.e. the ¯uid is at rest.

Let us notice that the crucial point of this proof is that div u � 0 or, more precisely, that HF is

orthogonal (in L2(O)) to u as soon as div u � 0 in O and u?n � 0 on @O. As we recall hereafter, this

property does not hold for the discrete problem.

Following the presentation of Girault and Raviart,2 we introduce for each h> 0 two ®nite-

dimensional spaces Wh and Qh such that Wh � H1�O�2 and Qh�O� � L2�O�. The latter is assumed to

contain the constant functions. We set

Xh � Wh \ H1
0 �O�2 � fvh 2 Wh; vhj@O � 0g;

Mh � Qh \ L2
0�O� � qh 2 Qh;

�
O

qhdx � 0

� �
:

The variational problem (8) is then approximated by: ®nd uh 2 Xh and ph 2 Mh such that

Z
�
O
Huh �Hvhdxÿ

�
O

Ph div vhdx �
�
O

f �vhdx

�
O

qhdiv uhdx � 0; �10�

for all vh 2 Xh and qh 2 Mh. In the case of f � HF we obtain, as in the continuous case,�
O
jHuhj2dx � ÿ 1

Z

�
O
F div uhdx; �11�

but now the right-hand side of (11) is not necessarily zero since F does not belong to Mh in general.

Thus the approximated velocity is not zero, which may explain the inaccuracies observed in the

numerical computations of Sections 2.1±2.3. Moreover, equation (11) shows that the approximated

velocity increases when the viscosity Z decreases, which has been noticed in the experiments.

Let us note that the above considerations do not explain the in¯uence of the grid. Distorted

elements are known to produce inaccuracies,4 but we are unfortunately not able to derive here a

precise error estimate linking the spurious speeds with the deformation of the mesh.

Nevertheless, we propose now a way to avoid spurious velocities when f�HF which will enable

us to understand why some results are much better on rectangular elements (at least with some

potentials).

4. A METHOD TO AVOID SPURIOUS SPEEDS WHEN f�HF

In the following developments we shall suppose, without loss of generality, that
�
O Fdx � 0. The

potentials F0 and F1 of the previous section can easily be changed to satisfy this property.

In order to obtain a zero velocity ®eld when f�HF, we suggest the following projection method.

First step

We compute PhF, the orthogonal projection in L2(O) of F onto Mh. In other words, we search

PhF 2 Mh such that �
O
PhFqhdx �

�
O
Fqhdx �12�

for all vh 2 Xh and qh 2 Mh.
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Second step

We replace (10) by this alternative formulation of the Stokes problem: ®nd uh 2 Xh and ph 2 Mh

such that

Z
�
O
Huh ? Hvhdxÿ

�
O

ph div vhdx � ÿ
�
Phf div vhdx;�

O
qh div uhdxdy � 0

�13�

for all vh 2 Xh and qh 2 Mh.

Thus we have �
O
jHuhj2dx � ÿ 1

Z

�
O
PhF div uhdx � 0; �14�

since PhF 2 Mh. Therefore uh� 0.

We have tested this method (with a home-made code) in the experiments of Sections 2.2 and 2.3:

the spurious velocities disappear on both a rectangular and a distorted mesh (see Table I for Q1=P0

elements and Table II for Q2=P1 elements).

We are now able to explain why spurious speeds do not appear on rectangular elements with the

potentials F0 and F1 of experiments 2.2 and 2.4, at least for the Q1=P0 pair of ®nite element spaces.

For this purpose let us compare �
O

f?vjdx � ÿ
�
O
F div vjdx

with

ÿ
�
O
PhF div vjdx;

where vj denotes the velocity shape function (Q1) relative to node j. Let us consider the four elements

Tk, k � 1; . . . ; 4, around node j (see Figure 10 in Appendix I). When the elements are identical

Table I. Maximum velocities (m s71) with classical method and projection method when
f�Hf with Q1=P0 pair of ®nite elements

Classical method Projection method

Experiment 2.2 Rectangular elements 0�1610ÿ11 0�08610ÿ11

(f� cste) Distorted elements 0�83 0�2610ÿ11

Experiment 2.3 Rectangular elements 0�76610ÿ 3 0�7610ÿ12

(f�Hf1) Distorted elements 0�17610ÿ 1 0�2610ÿ12

Table II. Same case as in Table I but with Q2=P1 pair of ®nite elements

Classical method Projection method

Experiment 2.2 Rectangular elements 0�2610ÿ 11 0�2610ÿ11

(f� cste) Distorted elements 0�3 0�5610ÿ8

Experiment 2.3 Rectangular elements 0�4610ÿ 3 0�1610ÿ11

(f�Hf1) Distorted elements 0�14610ÿ 1 0�3610ÿ10
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rectangles whose sides are parallel to the co-ordinates axes, we establish in Appendix I that these two

integrals are equal, for each j, whenever the following property holds:

P4
k�1

�ÿ1�k
�

Tk

�xÿ xc
k�F�x; y�dxdy � 0;

P4
k�1

�ÿ1�k
�

Tk

�yÿ yc
k�F�x; y�dxdy � 0;

�15�

where (xc
k , yc

k) are the co-ordinates of the centre Ck of Tk.

In particular, (15) holds for any F(x, y)�C1(x)�C2(y)� b(x, y), where C1 and C2 denote two

arbitrary functions and b is an arbitrary bilinear application.

Thus on rectangular elements, for potentials of the above form, it is equivalent to implement�
O f?vjdx or ÿ �O PhF div vjdx with Q1=P0 elements. Therefore in this particular case the traditional

system (8) leads to the same calculus as system (13) (which yields zero velocities, as proved above).

This explains the good results obtained on a rectangular mesh for a simple force like that in

experiment 2.2. In contrast, the potential F1(x, y)� x5� x4y3� x2y� y4 of experiment 2.3 does not

satisfy (15) and we indeed check that it yields a wrong velocity even on rectangular elements.

In the case of gravity, no spurious speeds appear on a right grid with Q2=P1 elements, since the

potential of the force belongs to the pressure space. Note that this is no longer true on a distorted

mesh.

5. EXTENSION TO THE GENERAL CASE

The method presented in the previous section leads to very good results when f is the gradient of a

known potential F. It can be straightforwardly extended to the case f � HF� curl g when F and g

are given.

The purpose of this last section is to extend this method to treat the case of any force f whose

decomposition into a gradient and a solenoidal part is unknown.

First step

Let Yh be a ®nite-dimensional space such that Yh � H1(O) (in practice we can take Yh�Xh). We

solve the following problem in order to compute an approximated gradient part of f: ®nd Fh 2 Yh

such that �
O
HFh?Hchdx �

�
O

f?Hchdx �16�

for all ch 2 Yh.

Second step

We compute PhFh 2 Mh such that�
O
PhFhqhdx �

�
O
Fhqhdx �17�

for all qh 2 Mh.
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Third step

Finally we solve the Stokes problem as follows: ®nd uh 2 Xh and p 2 Mh such that

Z
�
O
Huh?Hvhdxÿ

�
O

ph div vhdx �
�
O
�f ÿ HFh�?vhdxÿ

�
O
PhFh div vhdx;�

O
qh div uhdx � 0

�18�

for all vh 2 Xh and qh 2 Mh.

Remark 2

Note that Yh � H1(O) (in practice Fh is approximated in the same space as the velocity), thus the

calculus of HFh is consistent.

Remark 3

When div f 2 L2�O�, the problem solved in the ®rst step is the approximated variational

formulation of

DF � div f on O
@F
@n
� f?n on @O:

Let us check what happens when f�HF. We recall that the method of Section 4 yields a zero

velocity ®eld. Unfortunately, that is not the case here. More precisely, we have�
O
jHuhj2dx � 1

Z

�
O
�f ÿ HFh�?uhdx: �19�

Nevertheless, we prove in Appendix II that this estimate is better than (11) and the numerical results

show hereafter that this method actually improves the accuracy in experiments 2.2±2.4.

Tables III and IV show the results obtained when f�HF (but of course F is not a priori known)

with Q1=P0 and Q2=P1 elements. Note that they are less precise than with the method of Section 4

(especially for experiment 2.3) but still better than with the classical method.

Figure 8 shows the results obtained with the force f � curl g0 � HF0 of experiment 2.4 on a

distorted mesh (with g0 and F0 not a priori known by the code). Note that the computed velocity is

very close to the theoretical one, whereas the classical method gives a very bad ¯ow on the same

mesh (Figures 6 and 7). As previously, elements Q2=P1 and Q1=P0 give similar results (though

Q2=P1 is of course slightly better).

Tables V and VI show the dependence of kuhkL2�O�2 on h in the case f � Hf1 on rectangular

elements. In the case of Q1=P0 elements (resp. Q2=P1) the numerical experiment shows that when

Table III. Maximum velocities (m s71) with classical method and projection method for
arbitrary f with Q1=P0 pair of ®nite elements

Projection method
Classical method for arbitrary f

Experiment 2.2 Rectangular elements 0�1610ÿ 11 0�1610ÿ11

(f� cste) Distorted elements 0�83 0�2610ÿ11

Experiment 2.3 Rectangular elements 0�76610ÿ 3 0�19610ÿ5

(f�Hf1) Distorted elements 0�17610ÿ 1 0�4610ÿ3
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the classical method is used, kuhkL2�O�2 decreases proportionally to h2 (resp. h4), whereas it decreases

proportionally to h4 (resp. h6) with the projection method.

With an arbitrary potential F we show rigorously in Appendix II that with Q1=P0 elements,

kuhkL2�O�2 decreases at least proportionally to h with the classical method and proportionally to h2

with the projection method.

Table IV. Same case as in Table III with Q2=P1 pair of ®nite elements

Projection method
Classical method for arbitrary f

Experiment 2.2 Rectangular elements 0�9610ÿ12 0�44610ÿ11

(f� cste) Distorted elements 0�3 0�14610ÿ10

Experiment 2.3 Rectangular elements 0�4610ÿ3 0�7610ÿ7

(f�Hf1) Distorted elements 0�14610ÿ 1 0�25610ÿ4

Figure 8. Projection method for experiment 2.4 on same distorted mesh as in Figure 6. Note that the theoretical curve and the
numerical one are now the same. A very precise result is also obtained by the projection method with Q2=P1 elements in the

case corresponding to Figure 7

Table V. Value of kuhkL2�O�2 when mesh step h
decreases (case f�Hf1) with Q1=P0 elements

h Classical method Projection method

0�067 6�49610ÿ4 2�7610ÿ 6

0�05 3�66610ÿ4 8�6610ÿ 7

0�033 1�63610ÿ4 1�7610ÿ 7

0�028 1�19610ÿ4 9�2610ÿ 8

Table VI. Same case as in Table V but with Q2=P1
elements

h Classical method Projection method

0�083 2�1610ÿ4 1�9610ÿ 7

0�067 0�86610ÿ4 5�1610ÿ 8

0�05 0�28610ÿ4 0�9610ÿ 8

0�045 0�19610ÿ4 0�5610ÿ 8
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6. CONCLUSIONS

It has been shown that spurious speeds can appear in the ¯ow of an incompressible ¯uid subjected to

external forces if the numerical velocity is not rigorously divergence-free. We have proposed a

method which completely cancels the spurious ®eld for a force whose gradient part is a priori known

and which improves the results when the gradient part is unknown. A mathematical study of the

method has been presented. This method has been tested with Q1=P0 and Q2=P1 pairs of ®nite

elements, but it can easily be extended to other pairs of elements.

We have also shown that no spurious ®eld appears with a particular set of forces on a mesh

composed of Q1=P0 rectangular elements. This explains the good results obtained on regular meshes

with some simple forces such as gravity. Nevertheless, it has been shown that spurious speeds may

still appear on a regular mesh. Moreover, as soon as the mesh is composed of distorted elements, very

inaccurate results may occur even with gravity. In all these cases the method that we have proposed

improves signi®cantly the results.
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APPENDIX I

In this appendix we use the Q1=P0 pair of ®nite element spaces to approximate the velocity and the

pressure.

I.1. Notation

We shall denote by Tref the reference unit square [0, 1]6[0, 1] and by Fk the bilinear mapping that

maps Tref onto any quadrilateral Tk. Fk is de®ned by

Fk�x; Z� � �x; y� � �Ak
0 � Ak

1x� Ak
2Z� Ak

3xZ;Bk
0 � Bk

1x� Bk
2Z� Bk

3xZ�: �20�
Denoting by (ak

i ; bk
i ) the co-ordinates of the vertices of Tk (see Figure 9), we have

Ak
0 � ak

1; Ak
1 � ak

2 ÿ ak
1; Ak

2 � ak
4 ÿ ak

1; Ak
3 � ak

3 ÿ ak
2 ÿ ak

4 � ak
1;

Bk
0 � bk

1; Bk
1 � bk

2 ÿ bk
1; Bk

2 � bk
4 ÿ bk

1; Bk
3 � bk

3 ÿ bk
2 ÿ bk

4 � bk
1:

Figure 9. Quadrilateral Tk and reference unit square Tref
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The determinant of the Jacobian matrix of the transformation is

J k�x; Z� � Ak
1Bk

2 ÿ Ak
2Bk

1 � �Ak
1Bk

3 ÿ Ak
3Bk

1�x� �Ak
3Bk

2 ÿ Ak
2Bk

3�Z:

If jTkj denotes the area of Tk, let us remark that Jk(x, Z)� jTkj as soon as Tk is parallelogram. The

shape functions li of the reference element are de®ned by

l1�x; Z� � �1ÿ x��1ÿ Z�; l2�x; Z� � x�1ÿ Z�;
l3�x; Z� � xZ; l4�x; Z� � �1ÿ x�Z:

The shape functions ck
i of Tk are de®ned by

li � ck
i � Fk :

One easily checks that�
Tk

@ck
i

@x
dxdy �

�
Tref

�B2 � B3x�
@li

lx
ÿ �B1 � B3Z�

@li

@Z

� �
dxdZ; �21��

Tk

@ck
i

@y
dxdy �

�
Tref

ÿ�A2 � A3x�
@li

@x
� �A1 � A3Z�

@li

@Z

� �
dxdZ: �22�

I.2. In¯uence of the grid

We wonder whether the classical method could coincide with the method of projection presented in

Section 4. In other words, we are looking for conditions which imply�
O
F div vjdxdy �

�
O
PhF div vjdxdy; �23�

with vj� (vj, 0) or (0, vj) for all nodes j of the grid.

Proposition 1

If the elements of the mesh are identical rectangles whose sides are parallel to the co-ordinates axes

and if F(x, y)�C1(x)�C2(y)� b(x, y), where C1 and C2 denote two arbitrary functions and b is an

arbitrary bilinear application (or, more generally, if F satis®es property (15) of Section 4), then the

classical method coincides with the projection method presented in Section 4.

Proof. Let us consider the four quadrilaterals Tk, k � 1; . . . ; 4, surrounding node j. In order to

simplify the notation, we number them as in Figure 10. This allows us to write

vjjTk � ck
k :

For the sake of simplicity we denote ck
k by ck, omitting the superscript k in the sequel.

Since we use the P0 ®nite element space for the pressure, PhF is constant over each Tk. By

de®nition,

PhFjTk � Fk �
1

jTk j
�

Tref

F � Fk�x; Z�JdxdZ:
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Taking vj� (vj, 0), we have�
O
PhF

@vj

@x
dxdy � P4

k�1

Fk

�
Tk

@ck

@x
dxdy

� P4
k�1

Fk

�
Tref

�Bk
2 � Bk

3x�
@lk

@x
ÿ �Bk

1 � Bk
3Z�

@lk

@Z

� �
dxdZ;�

O
F
@vj

@x
dxdy � P4

k�1

�
Tk

F
@ck

@x
dxdy

� P4
k�1

�
Tref

F � Fk�x; Z� �Bk
2 � Bk

3x�
@lk

@x
ÿ �Bk

1 � Bk
3Z�

@lk

@Z

� �
dxdZ:

Let us suppose that the quadrilaterals of the mesh are parallelograms. Then Ak
3 � 0 and Bk

3 � 0 for

all k and Fk �
�

Tref
F � Fk�x; Z�dxdZ. Doing the same calculus with vj� (0, vj), equation (23) is

®nally equivalent toP4
k�1

�ÿ1�k
�

Tref

F � Fk�x; Z��ÿAk
1�xÿ 1

2
� � Ak

2�Zÿ 1
2
��dxdZ � 0;

P4
k�1

�ÿ1�k
�

Tref

F � Fk�x; Z��ÿBk
1�xÿ 1

2
� � Bk

2�Zÿ 1
2
��dxdZ � 0:

�24�

Let us write these equalities on the parallelograms Tk:P4
k�1

�ÿ1�k
jTk j2

�
Tk

F�x; y��2Ak
1Ak

2�yÿ yk
c� ÿ �Bk

1Ak
2 � Ak

1Bk
2��xÿ xk

c��dxdy � 0;

P4
k�1

�ÿ1�k
jTk j2

�
Tk

F�x; y��2Bk
1Bk

2�xÿ xk
c� ÿ �Bk

1Ak
2 � Ak

1Bk
2��yÿ yk

c��dxdy � 0;

�25�

where (xk
c , yk

c) are the co-ordinates of the centre of Ck of Tk.

Finally if the quadrilaterals are rectangles whose sides are parallel to the co-ordinate axes, we have

Ak
2 � Bk

1 � 0 for all k and (25) becomes

P4
k�1

�ÿ1�k
jTk j

�
Tk

F�x; y��xÿ xk
c�dxdy � 0;

P4
k�1

�ÿ1�k
jTk j

�
Tk

F�x; y��yÿ yk
c�dxdy � 0:

�26�

When all rectangles are identical, this relation is satis®ed in particular by F(x, y)�
C1(x)�C2(y)� b(x, y), where C1 and C2 are any functions and b is an arbitrary bilinear form.

Figure 10. Four elements around node j
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Therefore, with forces f(x, y)� (f1(x)� a1y, f2(y)� a2x), formulations (10) and (13) are equivalent on

meshes whose elements are identical and rectangular.

APPENDIX II

Our aim is to show that the projection method of Section 5 is more precise than the classical method

in the case f�HF.

We denote by uc
h the velocity obtained with the classical method and u

p
h the velocity obtained by

the projection method. We recall that the expected solution is u� 0 and�
O
jHuc

hj2dx � ÿ 1

Z

�
O
F div uc

hdx; �27�

whereas �
O
jHu

p
hj2dx � 1

Z

�
O
�f ÿ HFh�?up

hdx � 1

Z

�
O
�Fh ÿ F� div u

p
hdx: �28�

II.1. Notation

For any h> 0 we denote by th a regular `triangulation' of �O of typical size h. We suppose here that

any element T 2th is a quadrilateral, but it is not necessary.

As in Appendix I, Tref is the reference unit square [0, 1]6[0, 1] and FT is the bilinear mapping that

maps Tref onto any quadrilateral T. We denote by Qk the space of all polynomials in the reference

space of the form q̂�x; Z� �P cijx
iZj, where the sum range over all integers i and j such that

04 i, j4 k. We de®ne Qk�T � � fq � q̂ � Fÿ1
T ; q̂ 2 Qkg.

We introduce

Xh � fv2c0� �O�2; vhjT 2 Qk�T �2; 8T 2thg \ H1
0 �O�2;

Mh � fqh 2 L2�O�; qhjT 2 Ql�T �2; 8T 2thg \ L2
0�O�;

Yh � fy 2 c0� �O�; yjT 2 Qk�T �; 8T 2thg \ L2
0�O�:

The space Xh is devoted to the velocity, Mh to the pressure and Yh to the potential part of the force f.
We provide Hm(O) with the seminorm

jvjm �
P
jaj�m

�
O jDavj2dx

 !1=2

:

For f�HF, with F 2 Hm�1�O� \ L2
0�O�, m5 0, we de®ne Fh 2 Yh as the ®nite element solution of

the Neumann problem

ÿDF � div f in O;
@F
@n
� f?n on @O;

such that
�
O Fh � 0 (the condition on @O is formal when m� 0). More precisely, we have�

O
HFh?Hchdx �

�
O

f?Hchdx

for all ch 2 Yh.
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For l5 0 and z 2 L2
0�O� we recall that Ph z 2 Mh is de®ned as

PhzjT 2 Ql�T �;�
T

�Phzÿ z�qdx � 0; 8q 2 Ql�T �:

II.2. Error estimates

Proposition 2

We suppose that the force is gradient f�HF and we use the Q1=P0 pair of ®nite element space.

Then, when the typical size h of the mesh tends to zero, the seminorm j.j1 of the velocity calculated

by the classical method tends to zero like h, whereas the velocity calculated by the projection method

tends to zero like h2.

Proof. First we recall the following approximation result (see e.g. Reference 2).

Lemma 1

Let F 2 Hm+1(O) for some m such that 04m4 k. If we de®ne Fh as described in Section II.1,

jFÿ Fhj1 4C1hmjFjm�1;

with a constant C1> 0 independent of h and F.

The following lemma is a straightforward application of a result of projection in L2(O) presented in

Reference 2.

Lemma 2

Let z 2 Hs�O� \ L2
0�O� for some s such that 04 s4 l� 1. The projection Ph de®ned in Section

II.1 satis®es

kzÿPhzkL2�O�4C2hsjzjs;

with a constant C2> 0 independent of h and z.

We restrict ourselves to the case k� 1, l� 0 corresponding to the pair Q1=P0. We choose s� 1 and

m� 1 in the previous lemmas. In view of (27) we have

juc
hj21 � ÿ

1

Z

�
O
�FÿPhF� div uc

hdx

4
1

Z
kFÿPhFkL2�O�k div uc

hkL2�O�

4
C2

Z
hjFj1k div uc

hkL2�O�:

We deduce that

juc
hj1 4

C2

Z
jFj1h: �29�
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On the other hand, from (28) the estimate of jup
hj1 is

jup
hj21 � ÿ

1

Z

�
O
��Fh ÿ F� ÿPh�Fh ÿ F�� div u

p
hdx

4
1

Z
k�Fh ÿ F� ÿPh�Fh ÿ F�kL2�O�k div u

p
hkL2�O�

4
C2

Z
hjFh ÿ Fj1k div u

p
hkL2�O�

4
C1C2

Z
h2jFj2k div u

p
hkL2�O�:

Thus

jup
hj1 4

C1C2

Z
jFj2h2: �30�

A comparison between (29) and (30) shows the improvement of the projection method in the case

of f�HF. These estimates may be better in some particular cases (see Table V).
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